An effective bound for reflexive sheaves on canonically trivial 3-folds

نویسنده

  • PETER VERMEIRE
چکیده

We give effective bounds for the third Chern class of a semistable rank 2 reflexive sheaf on a canonically trivial threefold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cohomology of Reflexive Sheaves on Smooth Projective 3-folds

We study the cohomology of reflexive rank 2 sheaves on smooth projective threefolds. Applications are given to the moduli space of reflexive sheaves.

متن کامل

Moduli of Reflexive Sheaves on Smooth Projective 3-folds

We compute the expected dimension of the moduli space of torsionfree rank 2 sheaves at a point corresponding to a stable reflexive sheaf on a class of smooth projective threefolds; this class includes Fano and Calabi-Yau threefolds. Further, we show there are only two types of complete intersection Fano threefolds for which this dimension could be zero, and in each case we give an example where...

متن کامل

On Certain Moduli Spaces of Ideal Sheaves and Donaldson-thomas Invariants

We determine the structure of certain moduli spaces of ideal sheaves by generalizing an earlier result of the first author. As applications, we compute the (virtual) Hodge polynomials of these moduli space, and calculate the Donaldson-Thomas invariants of certain 3-folds with trivial canonical classes.

متن کامل

0 M ay 2 00 5 INTEGRAL COHOMOLOGY AND MIRROR SYMMETRY FOR CALABI - YAU 3 - FOLDS

In this paper we compute the integral cohomology groups for all examples of Calabi-Yau 3-folds obtained from hypersurfaces in 4-dimensional Gorenstein toric Fano varieties. Among 473 800 776 families of Calabi-Yau 3-folds X corresponding to 4-dimensional reflexive polytopes there exist exactly 32 families having non-trivial torsion in H∗(X, Z). We came to an interesting observation that the tor...

متن کامل

Positivity of Chern classes for Reflexive Sheaves on Pn

It is well known that the Chern classes ci of a rank n vector bundle on P N , generated by global sections, are non-negative if i ≤ n and vanish otherwise. This paper deals with the following question: does the above result hold for the wider class of reflexive sheaves? We show that the Chern numbers ci with i ≥ 4 can be arbitrarily negative for reflexive sheaves of any rank; on the contrary fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013